๐Ÿ“[๊ณตํ†ต์ˆ˜ํ•™1] ์ด์ฐจยท์‚ผ์ฐจยท๊ณ ์ฐจ๋ฐฉ์ •์‹ ๊ทผ๊ณผ ๊ณ„์ˆ˜์˜ ๊ด€๊ณ„ ์ฆ๋ช…

์ด์ฐจยท์‚ผ์ฐจยท๊ณ ์ฐจ๋ฐฉ์ •์‹ ๊ทผ๊ณผ ๊ณ„์ˆ˜์˜ ๊ด€๊ณ„ ์™„๋ฒฝ ์ฆ๋ช… ๊ฐ€์ด๋“œ

์ˆ˜ํ•™์—์„œ ๋ฐฉ์ •์‹์˜ ๊ทผ๊ณผ ๊ทธ ๊ณ„์ˆ˜๋“ค ์‚ฌ์ด์—๋Š” ์ผ์ •ํ•œ ๊ทœ์น™์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๋น„์—ํƒ€์˜ ์ •๋ฆฌ(Vieta’s Formulas)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด์ฐจ๋ถ€ํ„ฐ n์ฐจ๊นŒ์ง€ ๋‹จ๊ณ„๋ณ„๋กœ ์ฆ๋ช…ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. ์ด์ฐจ๋ฐฉ์ •์‹ (\(n=2\)) ์ฆ๋ช…

์ด์ฐจ๋ฐฉ์ •์‹ \(ax^2 + bx + c = 0\) (\(a \neq 0\))์˜ ๋‘ ๊ทผ์„ \(\alpha, \beta\)๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.

\(\alpha + \beta = -\frac{b}{a}\),   \(\alpha\beta = \frac{c}{a}\)
[์ฆ๋ช… ๊ณผ์ •]
1. ๋‘ ๊ทผ์ด \(\alpha, \beta\)์ด๊ณ  ์ตœ๊ณ ์ฐจํ•ญ ๊ณ„์ˆ˜๊ฐ€ \(a\)์ธ ์ด์ฐจ๋ฐฉ์ •์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ธ์ˆ˜๋ถ„ํ•ด๋ฉ๋‹ˆ๋‹ค.
\[ a(x – \alpha)(x – \beta) = 0 \] 2. ์ขŒ๋ณ€์„ ์ „๊ฐœํ•ฉ๋‹ˆ๋‹ค.
\[ a\{x^2 – (\alpha + \beta)x + \alpha\beta\} = 0 \] \[ ax^2 – a(\alpha + \beta)x + a\alpha\beta = 0 \] 3. ์œ„ ์‹๊ณผ ์›๋ž˜์˜ ์‹ \(ax^2 + bx + c = 0\)์˜ ๊ณ„์ˆ˜๋ฅผ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.
– \(x\)ํ•ญ์˜ ๊ณ„์ˆ˜ ๋น„๊ต: \(b = -a(\alpha + \beta) \Rightarrow \alpha + \beta = -\frac{b}{a}\)
– ์ƒ์ˆ˜ํ•ญ ๊ณ„์ˆ˜ ๋น„๊ต: \(c = a\alpha\beta \Rightarrow \alpha\beta = \frac{c}{a}\)
Q.E.D. (์ฆ๋ช… ์™„๋ฃŒ)

2. ์‚ผ์ฐจ๋ฐฉ์ •์‹ (\(n=3\)) ์ฆ๋ช…

์‚ผ์ฐจ๋ฐฉ์ •์‹ \(ax^3 + bx^2 + cx + d = 0\) (\(a \neq 0\))์˜ ์„ธ ๊ทผ์„ \(\alpha, \beta, \gamma\)๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.

\(\alpha + \beta + \gamma = -\frac{b}{a}\)
\(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}\)
\(\alpha\beta\gamma = -\frac{d}{a}\)
[์ฆ๋ช… ๊ณผ์ •]
1. ์„ธ ๊ทผ์ด \(\alpha, \beta, \gamma\)์ด๋ฏ€๋กœ ์‹์„ ์„ธ์šฐ๋ฉด:
\[ a(x – \alpha)(x – \beta)(x – \gamma) = 0 \] 2. ์ขŒ๋ณ€์„ ์ „๊ฐœํ•ฉ๋‹ˆ๋‹ค.
\[ a\{x^3 – (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x – \alpha\beta\gamma\} = 0 \] \[ ax^3 – a(\alpha + \beta + \gamma)x^2 + a(\alpha\beta + \beta\gamma + \gamma\alpha)x – a\alpha\beta\gamma = 0 \] 3. ์›๋ž˜์˜ ์‚ผ์ฐจ๋ฐฉ์ •์‹ ๊ณ„์ˆ˜์™€ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.
– \(x^2\)ํ•ญ ๋น„๊ต: \(b = -a(\alpha + \beta + \gamma) \Rightarrow \sum \alpha = -\frac{b}{a}\)
– \(x\)ํ•ญ ๋น„๊ต: \(c = a(\alpha\beta + \beta\gamma + \gamma\alpha) \Rightarrow \sum \alpha\beta = \frac{c}{a}\)
– ์ƒ์ˆ˜ํ•ญ ๋น„๊ต: \(d = -a\alpha\beta\gamma \Rightarrow \alpha\beta\gamma = -\frac{d}{a}\)

3. n์ฐจ ๋ฐฉ์ •์‹ (๊ณ ์ฐจ) ์ผ๋ฐ˜ํ™” ์ฆ๋ช…

n์ฐจ ๋ฐฉ์ •์‹ \(a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0\) ์˜ \(n\)๊ฐœ์˜ ๊ทผ์„ \(\alpha_1, \alpha_2, \dots, \alpha_n\)์ด๋ผ ํ•ฉ์‹œ๋‹ค.

[์ผ๋ฐ˜ํ™”๋œ ๊ณต์‹]
๋‹คํ•ญ์‹์˜ ์ „๊ฐœ ์›๋ฆฌ์— ๋”ฐ๋ผ ๊ทผ๋“ค์˜ ์กฐํ•ฉ์œผ๋กœ ๊ณ„์ˆ˜๊ฐ€ ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค.
1. ๋ชจ๋“  ๊ทผ์˜ ํ•ฉ: \(\sum_{i=1}^n \alpha_i = -\frac{a_{n-1}}{a_n}\)
2. ๋‘ ๊ทผ์”ฉ ๊ณฑํ•œ ๊ฒƒ๋“ค์˜ ํ•ฉ: \(\sum_{1 \le i < j \le n} \alpha_i\alpha_j = \frac{a_{n-2}}{a_n}\)
3. ๋ชจ๋“  ๊ทผ์˜ ๊ณฑ: \(\prod_{i=1}^n \alpha_i = (-1)^n \frac{a_0}{a_n}\)

4. ์ง์ˆ˜ ๊ณต์‹ ๋ฐ ํŒ๋ณ„์‹ ๋ณด์ถฉ

์ด์ฐจ๋ฐฉ์ •์‹ \(ax^2 + 2b’x + c = 0\) ์—์„œ ๊ณ„์‚ฐ ํšจ์œจ์„ ๋†’์ด๋Š” ๊ณต์‹์ž…๋‹ˆ๋‹ค.

  • ์ง์ˆ˜ ๊ทผ์˜ ๊ณต์‹: \(x = \frac{-b’ \pm \sqrt{(b’)^2 – ac}}{a}\)
  • ์ง์ˆ˜ ํŒ๋ณ„์‹ (\(D/4\)): \(D/4 = (b’)^2 – ac\)
  • ์‹ค๊ทผ ์กฐ๊ฑด: \(D \ge 0\) ๋˜๋Š” \(D/4 \ge 0\)

ยฉ 2026 ์ˆ˜ํ•™ ํ•™์Šต ์•„์นด์ด๋ธŒ. MathJax ์—”์ง„์œผ๋กœ ๋ชจ๋“  ์ˆ˜์‹์„ ๋ Œ๋”๋งํ–ˆ์Šต๋‹ˆ๋‹ค.

๋Œ“๊ธ€ ๋‚จ๊ธฐ๊ธฐ